Name	:	Key
		/ 1

FACTORING COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

1. Rewrite each of the following binomials as the product of an integer with a different binomial. (a) 10x-55 GCF=5 (b) 24x-40 GCF=8 (c) 6x-45 GCF=3 (d) 18x-9 GCF=9 5(2x-11) 8(3x-5) 3(2x-15) 9(2x-1)

(a)
$$10x-55$$
 6 $CF = 9$

(b)
$$24x-40$$
 60

(c)
$$6x-45$$
 GCF= 3

$$5(2x-11)$$

$$8(3x-5)$$

2. Rewrite each of the following binomials as the product of its gcf along with another binomial. (a) $2x^2 - 8x$ GCF = 2x (b) 6x + 27 GCF = 3 (c) $30x^2 - 35x$ GCF = 5x (d) $24x^3 + 20x^2$ $GCF = 4x^2$

(a)
$$2x^2-8x$$
 GCF = $2x$

(b)
$$6x+27$$
 $6CF=3$

(c)
$$30x^2 - 35x$$
 GCF= 5x (d) $24x^3 + 20x$

$$3(2x+9)$$
 $5x(6x-7)$

3. Rewrite each of the following binomials as the product of a conjugate pair.

(a)
$$x^2 - 121$$

 $(x+1)(x-11)$

(b)
$$64 - x^2$$

(c)
$$4x^2 - 1$$

(a)
$$x^2-121$$
 (b) $64-x^2$ (c) $4x^2-1$ (d) $25x^2-\frac{1}{9}$ (X+II)(X-II) (8-X)(8+X) (2X+I)(2Y-I) (5X+ $\frac{1}{3}$)(5X- $\frac{1}{3}$)

4. Rewrite each of the following trinomials as the product of its gcf and another trinomial. (a) $4x^2 + 12x + 28$ GCF= 4 (b) $6x^2 - 4x + 10$ GCF= 2 (c) $14x^3 + 35x^2 - 7x$ (d) $20x^3 - 5x^2 + 15x^2 +$

(a)
$$4x^2 + 12x + 28$$
 GCF= 4 (b) $6x^2 - 4x + 10$ GCF= 2 (c) $14x^3 + 35x^2 - 7x$ (d) $20x^2 - 3x + 13x$
 $4(x^2 + 3x + 7)$ $3(3x^2 - 2x + 5)$ $4(2x^2 + 5x - 1)$ $4(4x^2 - x + 3)$

(c)
$$14x^3 + 35x^2 - 7x$$

$$5x(4x^2-X+3)$$

5. Completely factor each of the following binomials using a combination of gcf factoring and conjugate pairs.

(a)
$$6x^2 - 150$$

(c) $(x^2 - 25)$

(b)
$$36-4x^2$$
 $11/9-x^2$

$$\frac{7(4x^2-1)}{3(2x+1)(2x-1)}$$

(a)
$$6x^2-150$$
 (b) $36-4x^2$ (c) $28x^2-7$ $3x(9x^2-4)$ $4(9-x^2)$ $4(9-x^2)$ $3(9x^2-4)$ $3(9x^2-4)$ $3(9x^2-4)$ $3(9x^2-4)$ $3(9x^2-4)$ $3(9x^2-4)$

$$6(x^2-25)$$

 $6(x+5)(x-5)$

(f)
$$2x^3 - 200x$$

(g)
$$8x^2 - 512$$

(h)
$$44x - 99x^{2}$$

$$8(x^2-64)$$

(e)
$$80-125x^{2}$$
 (f) $2x^{3}-200x$ (g) $8x^{2}-512$ (h) $44x-99x^{3}$
 $5(14-25x^{2})$ $2x(x^{2}-100)$ $8(x^{2}-64)$ $11x(4-9x^{2})$ $(5(4+5x)(4-5x))$ $(2x(x+10)(x-10))$ $(2x^{2}-64)$ $(3x(x+2)(2-3x))$

6. When completely factored, the expression $48-3x^2$ is written as

(1)
$$3(16-x)(16+x)$$

(3)
$$3(x-4)(x+4)$$

(1)
$$3(16-x)(16+x)$$
 (3) $3(x-4)(x+4)$ $3(16-x^2)$

(2)
$$3(x-16)(x+16)$$

$$(4)$$
3 $(4-x)(4+x)$

(2)
$$3(x-16)(x+16)$$
 (4) $3(4-x)(4+x)$ $3(4+x)(4-x)$

Which of the following represents the greatest common factor of the terms $4x^2y^6$ and $18xy^5$?

(1)
$$36xy$$

$$(3) 2xy^5$$

(2) $4x^2v^3$

$$(4) 2x^2y^2$$

Which of the following is not a factor of $6x^2 - 18x$?

(1)
$$x-3$$

(3) 12)
$$6x(x-3)$$

$$(4) \times = 2 \cdot 3 \cdot \times \cdot (x-3)$$

9. Which of the following prime numbers is *not* a factor of the integer 330?

$$\frac{330}{5} = 66$$
, $\frac{330}{7} = 47.14...$

APPLICATIONS

10. The area of any rectangular shape is given by the product of its width and length. If the area of a particular rectangular garden is given by $A = 15x^2 - 35x$ and its width is given by 5x, then find an expression for the garden's length. Justify your response.

A = lw : l = A

- $\frac{15x^2 35x}{6x} = \frac{3x 7}{6}$
- 11. The volume of a particular rectangular box is given by the equation $V = 50x 2x^3$. The height and length of the box are shown on the diagram below. Find the width of the box in terms of x. Recall that $V = L \cdot W \cdot H$ for a rectangular box. $V = L \cdot \omega \cdot h : U = \frac{V}{L \cdot h} \qquad \omega = \frac{Sox - 2x^3}{2x(x+5)} = \frac{2x-5}{2x(x+5)}$ $\omega = \frac{2x(25-x^2)}{2x(x+5)} = \frac{2k(x+5)(x-5)}{2x(x+5)^2}$

$$\omega = \frac{50x - 2x^3}{2x(x+5)}$$

dissiluves he checked. Considera

12. A projectile is fired from ground level such that its height, h, as a function of time, t, is given by $h = -16t^2 + 80t$. Written in factored form this equation is equivalent to

(1)
$$h = -16t(t+4)$$

(1)
$$h = -16t(t+4)$$
 (3) $h = -16t(t-5)$

$$h = -16t(t-5)$$

(2)
$$h = -8t(2t-7)$$
 (4) $h = -8t(t-5)$

(4)
$$h = -8t(t-5)$$

3.

COMMON CORE ALGEBRA II, UNIT #6 – QUADRATIC FUNCTIONS AND THEIR ALGEBRA – LESSON #2 eMathInstruction, Red Hook, NY 12571, © 2015

