Name:	Kur		
The second formation	1		

Algebra II

Per	ina	
rei	100	

Vertex Form of a Quadratic Equation

•	Vertex Form of	a Quadratic Equation	f(x)) =	a(x)	$-h)^{2}$	+k	
---	----------------	----------------------	------	-----	------	-----------	----	--

- (h, K) is the vertex (change h, keep k)
- ____ determines the width and direction of the parabola
 - lai 701 stretches the graph (makes it skinnier)
 - <u>lal< 1</u> shrinks the graph (makes it wider)
 - $\underline{-a}$ reflects the graph over the $\underline{X-axis}$
- h determines the horizontal shift (+h moves to the left , -h moves to the
- \underline{k} determines the vertical shift (+k moves the graph \underline{down}) -k moves the graph
- To find the y-intercept of the graph, plug in $\underline{\hspace{1cm}}$ for x and simplify the expression.

Why we use this form?

Vertex form shows the $\frac{\text{transformations}}{\text{to its parent function}} = \frac{f(x)}{f(x)} = \frac{x^2}{x^2}$.

Directions: Describe how each function compares to the parent function. Then, state the vertex.

Comparing to the Parent Function

1.)
$$f(x) = x^2 + 9$$

 $(0, 9)$

$$\begin{array}{c} 2.) f(x) = x^2 - 2 \\ \text{down } \lambda \left(0, -2 \right) \end{array}$$

3.)
$$-(x+5)^2$$

reflect $(-5,0)$

4.)
$$f(x) = (x-4)^2 - 1$$

right 4
down 1 (4,-1)

5.)
$$f(x) = \frac{1}{3}x^2 + 2$$

shrink by $\frac{1}{3}$
up 2 $(0, 2)$

6.)
$$f(x) = -2(x+4)^2$$

reflect
stretch by 2 (-4,0)
left 4

7.)
$$f(x) = 3(x-2)^2 + 3$$

stretch by 3
right 2 (2,3)
up 3

8.)
$$-\frac{3}{4}(x+3)^2-7$$

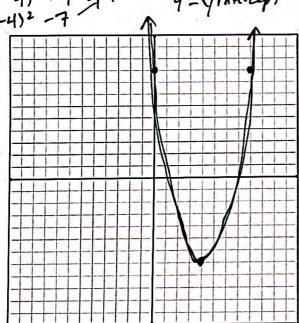
reflect

shrink by $\frac{3}{4}(-3,-7)$

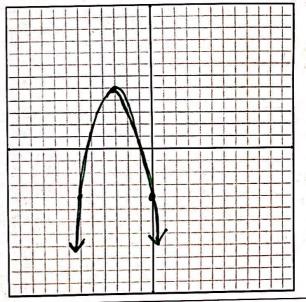
left 3

down 7

Directions: Given the transformations described, write the quadratic function in vertex form.

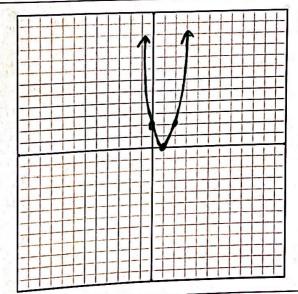

- 9.) Mason graphed the parent function of a quadratic equation. Then, he reflected the parabola over the x-axis, and translated it seven units up and three units to the right. What is the equation of the new parabola? $f(x) = -(x + 3)^2 + 7$
- 10.) Kyria graphed the parent function of a quadratic equation. Then, she stretched the parabola by a factor of 3, and translated it one unit to the left and five units down. What is the equation of the new parabola?

$$f(x) = 3(x+1)^2 - 5$$


11.) A quadratic equation has a vertex of (-2, -4) and was <u>reflected over the x-axis</u>. What is the equation of the parabola? $f(x) = -(x+3)^2 - 4$

Directions: Find the vertex and y-intercept of the graph. Then plot the points to graph the equation.

12.) $f(x) = (x-4)^2 - 7$ vertex: (4, -7) $(0-4)^2 - 7$ $| (0-7)^2 - 7 | | (0-7)^2 - 7 |$



13.) $f(x) = -(x+3)^2 + 5$ Vertex: (-3,5) $-(0+3)^2 + 5$ -9+5 = -4 = 4-interest $-(3)^2 + 5$

14.)
$$f(x) = 2(x-1)^2$$
 vertex (1,0)

$$2(0-1)^{2}$$
 $2(-1)^{2}$
 $2(1) = 2 = -intempt$

